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ABSTRACT
Understanding the way people move through urban areas
represents an important problem that has implications for
a range of societal challenges such as city planning and evo-
lution, public transport or crime. In this paper, we lay our
focus on a particular kind of human movement trajectories:
urban photo trails, i.e., geo-temporal trails that are produced
by humans when taking photos in urban areas. We study
these movement trajectories and explore different explana-
tions of how they materialize. For our experiments, we obtain
trails of geo-temporally tagged photos from Flickr and adopt
a Bayesian framework called HypTrails to study human move-
ment. We specify a set of hypotheses and compare them
on data obtained from four different cities (Berlin, London,
Los Angeles, New York). Our results suggest that urban
photo trails exhibit interesting commonalities and differences
across cities that can be identified and explored through the
approach adopted in this work.

Categories and Subject Descriptors: H.5.3 [Informa-
tion Interfaces and Presentation]: Group and Organi-
zation Interfaces—Web-based interaction
Keywords: Human Trails; Flickr; Hypotheses; HypTrails

1. INTRODUCTION
Understanding the way people move through urban areas

represents an important problem that has implications for a
range of societal challenges such as city planning and evolu-
tion, public transport or crime. Recent research has studied
human movement trajectories in cities through a variety
of data sources including mobile phone data [15, 36], GPS
tracking [42], WiFi tracking [29], location-based social media
platforms [10], online photo sharing sites [12, 13, 14] and
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others. Such studies of human trails have deeply enriched
our knowledge of the ways in which people move through
urban space. For example, research has indicated that hu-
man mobility exhibits regularities [15, 36] and temporal and
spatial patterns [10]. Research has also shown that we can
successfully leverage these patterns. To give an example,
De Choudhury et al. [12] illustrated that by looking at how
people subsequently take photos in a city, high quality travel
itineraries can be constructed automatically.

In this paper, we want to extend this stream of research by
looking at trails of human movement exemplified in urban
photo trails, and explore different explanations of how they
have been produced.

Problem and Objective. In this work, we aim to compare
a set of different hypotheses about urban photo trails given
actual sequential photo data from the Web. We want to
explore the plausibility of different potential explanations for
the trails of photos that we can observe on social sharing
websites such as Flickr. We define an urban photo trail as a
sequence of spatial positions in a city over a period of time
as, for example, obtained from the geo-temporal metadata of
photos. Then, hypotheses can be expressed as different beliefs
about transitions between spatial positions. For example,
we might want to compare a proximity hypothesis —that
represents a belief that humans frequently take subsequent
photos in geographically close regions of a city— with a
Points-of-Interest (POI) hypothesis that represents a belief
that humans take subsequent photos of POIs. The problem
is complicated by the fact that the photo trails produced
by different user populations in different cities might yield
different explanations given different data.

For a better understanding, consider our visualizations in
Figure 1. In Figure 1(a) we depict Berlin and our cell based
grid layout of the city. The heatmap illustrates the frequency
of photos taken in each single cell of the grid as derived from
our data. In this paper, we are interested in how urban photo
trails are produced, i.e., how people move through the city
while taking photos. Thus, we are interested in transitions
and their probabilitites as the example in Figure 1(b) demon-
strates. We see the transition probabilities that denote how
likely people will take a photo in corresponding geographic
cells next after they have taken one at the Bundestag. For in-



(a) Grid cells and their frequency (b) Transition probabilities (c) Proximity hypothesis

Figure 1: Main concepts. This figure illustrates the main concepts of this work. In (a), we visualize the cell
based grid layout of Berlin with corresponding frequencies of photos taken in corresponding cells as derived
from our data at interest. In (b), we exemplary pick the cell (state of a Markov chain) where the German
Bundestag is located, and visualize the transition probabilities of subsequent cells people frequently take
photos at. For instance, with a probability of 0.07, people take a picture at the Brandenburg Gate after
they have taken one at the Bundestag. Finally, in (c), we depict an exemplary proximity hypothesis that
we want to study. This hypothesis believes that human successively take photos in proximate areas of a city.
We express this as beliefs in Markov transitions. As (c) shows, this belief suggests that we have a higher
probability that people take their next picture in direct proximity of the previous cell.

stance, the probability of taking a photo at the Brandenburg
Gate after taking one at the Bundestag is 0.07. As mentioned,
the ultimate goal of our work is to compare hypotheses with
each other. In Figure 1(c) we demonstrate the main idea of
the exemplary proximity hypothesis mentioned above. The
heatmap depicts the belief in transition probabilities for this
hypothesis; higher proximity refers to higher belief.

Approach. To tackle these challenges, we resort to Bayesian
approach called HypTrails [32] that is suited for comparing
hypotheses about human trails. This approach is based on
Markov chain modeling and Bayesian inference and allows
for relative comparison of hypotheses given data. The main
idea is to elicit priors from hypotheses and then utilize the
sensitivity of the prior on the evidence (marginal likelihood)
as a means to give insights into the relative plausibility of
hypotheses. We reconstruct urban photo trails from geo-
tagged user photo streams on Flickr. Then we construct
hypotheses from general concepts like proximity, but also
employ semantic web content from Wikipedia, DBpedia and
YAGO to refine these hypotheses. The hypotheses are then
compared on four different cities, namely Berlin, London,
Los Angeles and New York.

Contributions and Findings. The overall contribution
of this work is a systematic evaluation of hypotheses to
explain how urban photo trails materialize in 4 different
cities. We find that the cities share common characteristics,
i.e., that the partial order of hypotheses for different cities
is quite stable. Furthermore, we find that using semantic
web content for hypothesis generation can contribute to
explaining the production of the photo trails of humans
at interest. Concretely, the general concept of proximity
combined with Wikipedia entities in combination with their
page views yields the highest evidence among the hypotheses
studied.

Structure. We start by giving an overview of related work
in Section 2. Next, we describe the utilized HypTrails method
for comparing hypotheses about human photo trails as well

as the Flickr data studied in Section 3. In Section 4 we
elaborate the hypotheses at interest and how we can express
them. Afterwards, Section 5 shows our experiments and
results. We discuss our work in Section 6 and conclude it in
Section 7.

2. RELATED WORK
This section is structured to cover related work from three

areas of research: (i) studies on geo-spatial trails, (ii) studies
on Flickr as well as (ii) studies on human trails on the Web
in general.

Geo-spatial trails. In the past, geo-spatial trails have
frequently been studied by looking at mobility patterns of
humans as derived from mobile data. Song et al. [36] studied
the limits of predictability in these kind of geo-spatial trails.
They found high predictability with a lack of variability be-
tween humans. This suggests that regularities emerge when
people move through the world. The authors even argue that
these regularities might be based on the inherent regularities
in human behavior in general. [15] suggests similar obser-
vations by looking at mobile phone data: human mobility
trails show high temporal and spatial regularity. In [10], the
authors investigated basic laws that steer human mobility
as captured from location-based social media platforms and
mobile phone data. Even though these kind of datasets differ,
the results demonstrate several common patterns such as pe-
riodicity and influence by social ties. However, short-ranged
human mobility does not seem to be impacted by the social
network structure at the same level as long-distance travel.
Previous research has also focused on studying the network
properties of geo-spatial trails [23].

Flickr. Geo-spatial trails have also been studied on Flickr.
For instance, De Choudhury et al. [12] aimed at leveraging
photo trails for automatically constructing travel itineraries
through cities. The main idea of their approach is to aggre-
gate all trails into a POI graph and then use the popularity



of POIs for calculating itineraries. The authors’ evalua-
tion based on a comparison against well-known itineraries
from travel agencies indicates high quality. Similar work has
been done by Tai et al. [37] who have used past landmarks
photographed by users for recommending sequences of new
landmarks as derived from sequential information by other
users on Flickr. Girardin and colleagues have conducted
several studies on photo trails as captured from Flickr. In
[13] they studied digital footprints as determined explicitly
via photo trails and in [14] they focused on tourist dynamics
based on concentrations and spatio-temporal flows revealing
popular points of interests, density points and common trails
tourist follow.

Apart from trails, Flickr has also been studied in several
other dimensions, specifically regarding tagging. Tagging
research on Flickr has been steered by the early work by
Marlow et al. [20]. As tags play a crucial role on Flickr,
related works have also focused on recommending tags on
Flickr such as [31]. Tags can even reveal the gender and
location of users [28]. Apart from tags, photos themselves
can give insights into visit times at landmarks [27] or for
automatically finding places that people find interesting to
photograph [11]. Lerman and Jones [18] demonstrated that
browsing through the contacts’ photo streams is a primary
method for Flickr users to find images. Additionally, related
works have also studied the social network on Flickr [7, 22].

Human trails on the Web. Human trails—i.e., sequential
interactions of humans with the Web—have been studied
by our research community in various contexts since the
inception of the World Wide Web [2]. While some work
has mainly focused on modeling (e.g., [3, 4, 9, 26, 30, 33]),
others have been more interested in investigating regularities,
patterns and strategies (e.g., [16, 38, 39]) that emerge when
humans sequentially engage with the Web. These kind of
works have been interested in answering similar objectives as
this paper, i.e., understanding sequential steps by humans.
In the following, we want to provide some exemplary related
works in that direction.

One of the most prominent interaction of humans with
the Web—maybe even also one of the first—is the naviga-
tion between websites. An example of early work regarding
patterns and strategies in human navigational trails is by
Catledge and Pitkow [6] who aimed at augmenting WWW
pages. Further work [9, 16] emphasized that humans base
their navigational steps on some regularities and patterns.
As an example, Pirolli and Card [25] derived the so-called
information foraging theory that postulates that human be-
havior in an information environment on the Web is guided
by information scent which is based on the cost and value
of information with respect to the goal of the user [9]. Also,
researcher have found that semantics influence human navi-
gational choices [5, 8, 24, 34, 39, 40].

Apart from human navigational trails, previous work has
also identified cognitive strategies in other kinds of human
trails on the Web. For example, An et al. [1] found that
human participate in partisan sharing on Facebook. White
and Huang [41] identified the importance of following search
trails on the Web. The work by Yang et al. [43] states that
humans follow certain stages in their sequential behavior
which the algorithm proposed in corresponding work can
identify. The work by Matsubara et al. [21] emphasizes the
existence of trends in human trails that can be captured.

Contrary to elaborated previous works, we directly aim
at comparing hypotheses about human trails on the Web in
this article. This means that we do not strive for finding
explanatory patterns, but rather we want to directly judge
about the relative order of hypotheses that aim at explaining
the sequential behavior. To that end, we apply the so-called
HypTrails approach as presented in [32], as introduced in
some more detail in the following section.

3. METHODS AND MATERIAL
In this section, we give an overview of our methodology

and the data that we study in this article. By and large, we
are interested in studying trails that emerge when humans
take photos in a geographic environment. In detail, we want
to get insights into the relative plausibility of hypotheses
about how humans choose their next location to take a photo
by comparing them. For doing so, we resort to an approach
called HypTrails as well as data derived from Flickr. We
describe both the method and the data next.

3.1 Methodology
HypTrails is an approach for comparing hypotheses about

human trails with each other. Technically, HypTrails is
based on Markov chain modeling and Bayesian inference.
The approach provides insights into the relative plausibil-
ity of hypotheses—assumptions in common and uncommon
transitions. In the following, we only very shortly outline the
main concepts and ideas of HypTrails and refer the reader
to [32] for more detailed information.

With HypTrails, we model trails as a first-order Markov
chain—a stochastic system that models transitions between
states. In Bayesian statistics, the marginal likelihood—also
called evidence—denotes the probability of the data given a
hypothesis H. The main idea of HypTrails is to utilize the
influence of the prior on the evidence for comparing hypothe-
ses with each other. In particular, hypotheses are expressed
as Dirichlet priors. Thus, using different hypotheses as priors
leads to different marginal likelihoods when combined with
observed data. When we compare two hypotheses, a higher
evidence for a given hypothesis indicates a higher plausibility
of it. Bayes factors are utilized for determining the strength
of evidence for one hypothesis over the other. In this article,
all Bayes factors are decisive which is why we refrain from
explicitly reporting them—please refer to [32] for further
details.

In detail, the following steps are necessary for an applica-
tion of HypTrails given a set of generic hypotheses about the
production of the human photo trails at interest:

(i) First, we need to specify a hypothesis matrix Q for each
hypothesis. Q quantifies our assumptions about transitions
between the states observed in the trails. No negative values
are allowed and higher values correspond to stronger assump-
tions. We describe this process as well as our hypotheses at
interest in detail in Section 4.

(ii) Next, we need to pass these matrices and observed
data (see Section 3.2) to HypTrails that subsequently elicits
the Dirichlet priors for each hypothesis with varying values
of the hypothesis weighting factor K. Basically, the higher
we set the parameter K the stronger we believe in a given
hypothesis.

(iii) Based on this elicitation, HypTrails determines the
evidences for each hypothesis and each parameter K. As men-
tioned above, for simplicity, we can state that one hypothesis



H1 is more plausible compared to another hypothesis H2,
if the evidence of H1 is higher than the one of H2 for the
same value of K. Thus, the partial ordering based on the
plausibility of respective hypotheses H = {H1,H2, ...,Hn}
can be determined by ranking their evidences from largest
to smallest for single values of K. We present corresponding
results in Section 5

3.2 Datasets
Throughout this work, we are interested in studying human

photo trails through cities by analyzing Flickr1 data. In this
section, we first describe the dataset generation process, that
is, what data was collected and how we transform it into the
required representation of trails and state transitions. Then,
we highlight some basic characteristics of our datasets.

Data collection. Our datasets2 contain metadata—i.e.,
user, temporal and geo-reference (latitude and longitude)
data—about images uploaded to the Flickr platform. In
particular, we focus on pictures taken in the cities of Berlin,
London, Los Angeles and New York between January 2010
and December 2014. For each city, we define a bounding box,
see Table 3.2. We acquired corresponding data by crawling
Flickr’s public API. Since our analysis requires an exact
position, we additionally filter the pictures by the positional
accuracy as indicated by the Flickr API, concentrating on
pictures with street-level accuracy (level 16 on the Flickr
scale3) only.

For our analysis, we interpret the sequence of all images
of a single user, ordered by the time the photo was taken,
as a trail regardless of the time difference between pictures.
Each node in a trail, i.e., each image, is mapped to a cell of
a grid that we place over the respective city according to its
geo-reference . The grid cells are used as states of the Markov
chain in the HypTrails approach. For our experiments, we
choose a size of 200m x 200m for each cell. Figure 1 show
several grids and grid cells in Berlin to give an idea about
the chosen granularity.

In all of our datasets, the trails contain sequences of pic-
tures taken in the same grid cell. However, since we are
mostly interested in the sequence of different places humans
visit and photograph, we focus on the sequence of visited
places in this paper. For that purpose, we remove all but one
subsequent occurrences of the same grid cell in the paths. In
other words, all transitions in the Markov chain from a state
to itself are removed. In the end, we work with trails over
cells in a city where each trail corresponds to the places one
person has successively taken pictures at.

1https://flickr.com
2Dataset access can be requested via e-mail.
3see https://www.flickr.com/services/api/flickr.places.

findByLatLon.html.

Table 1: Bounding boxes and center coordinates
used for data collection and hypothesis creation.

min lon. min lat. max lon. max lat.
Berlin 13.088400 52.338120 13.76134 52.675499
London -0.5103 51.2868 0.3340 51.6923
Los Angeles -118.6682 33.7037 -118.1552 34.3368
New York -74.2589 40.4774 -73.7004 40.9176

Berlin London Los Angeles New York
lon 13.383333 -0.1280 -118.2450 -74.0071
lat 52.516667 51.5077 34.0535 40.7146

On overview of the filtered processed dataset can be seen in
Table 3.2. The number of photos corresponds to the number
of trail nodes, i.e. the number of photos after filtering self-
transitions and trail of length smaller than 2. The number
of cells is the number defined by the corresponding bounding
box and grid. Covered cells is the number of cells covered by
the trails.

Points of interest. An intuitive hypothesis (see Section 4)
for photo trails is a hypothesis where pictures are taken at
important places within a city, so called points of interest
(POIs). To identify POIs, we queried linked data from the
DBpedia [17] and YAGO projects [19]. In particular, we
extracted all entities from DBpedia that are located in a
city’s bounding box according to the properties geo:lat and
geo:long. The result set of entities also includes areas such
as ”Germany”, which are also mapped to a specific location
in the bounding box according to these properties. In a data
cleaning step, we removed all entities that are specified as
districts (i.e., having the value yago:District108552138 as
rdf:type).

Additionally, we quantify importance of a POI in some
hypotheses. As an approximate measure of importance we
take pageview counts of the Wikipedia articles describing the
POIs. We extract view counts from the Wikimedia download
page4. In this work, we use the view counts for January
2012. Table 3.2 shows the number of POIs per city and their
average view count.

4. HYPOTHESES
The HypTrails approach allows to compare hypotheses

about human trails—see Section 3 for details. These are
easily specified by constructing matrices that reflect beliefs
about transitions from one state to another. In our setting,
that means, that we hypothesize where the next picture of
a person will be taken given only the location of her last
picture. In this section, we discuss how intuitions and beliefs
about the production of human photo trails can be formalized
into hypothesis matrices according to the concepts of the
HypTrail approach.

A single hypothesis matrix Q is defined as follows: for each
geographic grid cell (state in the Markov chain) si we set
our beliefs about transitions to every other grid cell sj . In
the HypTrails approach, see [32] and Section 3, higher values
should correspond to higher beliefs in corresponding transi-
tions. In this paper, we express our assumptions for a given
hypothesis directly as row probabilities P (s = sj |si). To give
an example, one hypothesis might assume that people choose
state (grid cell) s2 with a probability of 0.5 for taking their
next photo when they previously have taken a photo in cell
s1. Thus, this hypothesis would set P (s = s2|s1) = 0.5. Also

4http://dumps.wikimedia.org/other/pagecounts-raw/

Table 2: Basic dataset statistics.

Berlin London Los Angeles New York
years 2010-11 2010-14 2010-14 2010-14
photos 60978 794535 300373 714549
cells 43052 66444 84014 58065
trails 4364 35101 15357 31246
covered cells 6343 23694 25834 15232
avg. trail length 13.97 22.64 19.56 22.87

POIs 1085 7228 1462 6002
avg. view counts 1240 1272 3654 1511



consider our example depicted in Figure 1(c). Ultimately,
all elements of the hypothesis matrix Q are set according to
this specification: Q(i, j) = P (s = sj |si). With this notation,
each row i of Q has `1-norm leading to

∑
j Q(i, j) = 1.

In most cases, we will not directly define a belief as a
probability of each transition P (s = sj |si), but as a function
P̄ (s = sj |si). This function can then be transformed into a
probability distribution by a normalization factor 1

Z
obtained

by summing over all values of P̄ :

P (s = sj |si) =
1

Z
P̄ (s = sj |si), Z =

n∑
k=1

P̄ (s = sj |si)

In general, we can categorize hypotheses into two types:
for global hypotheses our belief in transitions to the next
state are independent from the last state. In this case, the
rows of the hypothesis matrix are all identical to each other.
By contrast, for local hypotheses beliefs in transitions to the
next state do depend on the previous state. In the following,
we describe all hypotheses studied in this article and how we
can transform them to hypothesis matrices suitable for the
HypTrails approach.

4.1 Uniform Hypothesis
This global hypothesis formulates the belief that each

transition from any grid cell to another is equally likely. In
other words, it assumes that users will randomly take pictures
anywhere in the city regardless of the previous location. This
is formalized as follows:

Puni(i, j) =
1

n

Where n is the number of grid cells in the defined bounding
box—i.e., the number of states in the state space. This
hypothesis can be seen as a baseline; if other informed hy-
potheses are not more plausible than this one, we cannot
expect them to express good hypothesis about the production
of human photo trails.

4.2 Center Hypotheses
Typically, the center of a city is its most lively part and one

could expect that most pictures are taken there. Therefore,
this global hypothesis believes that the next picture of a
user is always taken with a higher probability near the city
center, regardless of the position of the user’s last image.
This is formalized by computing the geographic center C of
the city (in our case given by the center of the cities bounding
box) and employing a two-dimensional Gaussian distribution
centered at this point. Given the geographic (haversine [35])
distance dist(C, i) between the city center C and the central
point of the grid cell si, the entries of the hypotheses matrices
can be derived from the following distribution:

P̄center(i, j) = e
− 1

2σ2 dist(C,j)2

Note, that in order to obtain a proper probability mass
function a normalization constant has to be applied since
the number of states in our model is finite.

The hypotheses are parametrized by specifying the stan-
dard deviation σ (e.g., in km) of the Gaussian distribution.
A small value of σ indicates assumes that most pictures are
taken very close to the city centre. If σ approaches infinity,
the hypotheses approximates the uniform hypothesis.

4.3 Proximity Hypotheses
This hypothesis expresses the belief that the next image

of a user will be taken nearby the last image considering the
geographic distance. This hypothesis is partly motivated by
findings of previous work [10, 15, 32]. We formalize this as
follows: we define the distance dist(i, j) between two grid
cells si and sj as the distance between the geo-coordinates
of the centers of the two cells. Then, we can specify the
respective believed transition probabilities by employing two-
dimensional Gaussian distributions.

P̄prox(i, j) = e
− 1

2σ2 dist(i,j)2

As before, a standard deviation σ must be specified. Here, a
small value of σ suggests a picture is more likely to be taken
very close to a user’s previous picture. An example for this
hypothesis is depicted in Figure 1(c) where we depict our
beliefs in transitions from one state to other states (i.e., one
row of Q).

4.4 Points of Interest Hypotheses
Previous work has shown that photo trails as derived

from Flickr can be utilized to automatically construct travel
itineraries through a city [12]. This suggests that humans
move along points of interests (POIs) when taking photos
throughout urban spaces. Examples of points of interest
are not only tourist attractions, but also stations for public
transportation or the locations of governmental institutions.
For our work, we extracted potential points of interest from
DBpedia, see Section 3.2. Thus, we are interested in studying
these global hypotheses that expresses the belief that people
take a majority of pictures near such points of interest. How-
ever, it is save to assume that pictures are often not taken
directly where a POI is located in the data, either as the
POI itself covers a somewhat larger area, or as pictures have
to be taken at a certain distance from the POI (e.g., to cover
a architectural attraction fully in one picture), or as people
intend to visit the POI, but find something interesting to
photograph nearby. Again, we model this by using a multi-
variate Gaussian distribution, hypothesizing that there is a
high chance that a picture is taken directly at the POI and
a lower chance that a picture is taken in a grid cell in the
neighborhood of a POI. Using this normal distribution, we
get for each cell c and each POI q ∈ Q a probability Ppoi(q, c)
that q generates a picture in the cell c:

G(q, c) = e
− 1

2σ2 dist(q,c)2
,

as before dist(q, c) describes the haversine distance between
the POI q and the cell c. Then, for each cell, we aggregate
the probabilities of all points of interests:

P̄poi(i, j) =
∑
q∈Q

G(q, j)

Similar to the distance hypothesis, the standard variation σ
has to be chosen. In this case, a small parameter indicates
that one assumes pictures to be taken directly at the point
of interest, a larger setting assumes that pictures are taken
somewhere in the surrounding of a POI.

4.5 Weighted Points of Interest Hypotheses
Each city contains a large amount of potential points of

interest. However, not all might be of equal importance.
For example, the ”Brandenburg Gate” could be expected to



have more influence on human trails in the city of Berlin
than the less known ”Charlottenburg Gate”. Thus, for this
hypothesis, we assume that the importance of a POI q can be
approximated by the view count views(q) of the Wikipedia
article corresponding to the POI. If the view count of an
article is very high (as e.g., for the ”Brandenburg Gate”),
we expect the respective POI to have a stronger influence
on the sequence of image locations. We formalize this by
introducing weighting functions to each summand of the POI
hypothesis, resulting in:

P̄weighted poi(i, j) =
∑
q∈Q

(views(q) ·G(q, j)) .

This linear weighting potentially overemphasizes the impor-
tance of large points of interest. Therefore, we suggest as
variation to use logarithms of view counts as weights instead:

P̄log weighted poi(i, j) =
∑
q∈Q

(log(views(q)) ·G(q, j)) .

4.6 Combinations of Hypotheses
Some proposed hypotheses are to a large degree indepen-

dent from each other and can easily be combined. Formally,
we combine hypotheses by multiplying the respective ele-
ments of the hypothesis matrices. We study two combina-
tions throughout this paper, but other kinds of combinations
are conceivable.

Proximate weighted points of interest hypotheses.
As an example, an intuitive hypothesis is that a user will
take her next picture at some POI, but more likely at a
POI that is close to the position of her last picture. We
can express such a hypothesis by combinations of distance
hypotheses and POI hypotheses can be computed as

P̄prox poi(i, j) = P̄prox(i, j) · P̄weighted poi(i, j.)

Proximate center hypotheses. Similarly, hypotheses
that express the belief that the next picture is taken more
likely near the position of the last image, but also more likely
near the city center can be determined by:

P̄prox center(i, j) = P̄prox(i, j) · P̄center(i, j.)

5. EXPERIMENTS
In Section 4, we have introduced a set of hypotheses which

provide possible explanations for human trails while moving
through a city and taking pictures. In this section, we
compare these hypotheses with each other based on empirical
trails derived from four different cities, i.e., Berlin (Germany),
Los Angeles (USA) and London (United Kingdom) (see
Section 3.2). For doing so, we resort to our methodological
approch outlines in Section 3.1. Since each hypothesis has
different parameters and some hypotheses depend on one
another, we first conduct an in-depth study of each hypothesis
on Berlin in the same order as they have been introduced in
Section 4 and compare the results. Afterwards, we report the
best hypotheses (based on their parameter configurations) of
each city and highlight prominent differences between cities.

In the following, we are often referring to Gaussian distribu-
tions used for weighting transition probabilities or factors. In
this context, the elements of the hypothesis matrix Q might
be rather small. Thus, if not stated otherwise, we always set
the value for a belief in a transition Q(i, j) = P̄ (s = sj |si)

to 0 if P̄ (s = sj |si) < 0.01 (cf. Section 4). Also, as stated
in Section 3.2, since we are interested in how people move
around the city and not if they stay and how long they stay
at a certain spot, we have removed self transitions from trails
and consequently set Q(i, j) to 0 for all self-transitions in
every hypothesis.

5.1 Berlin
In this section, we introduce each hypothesis in detail using

the example of Berlin in the same order as they have been
introduced in Section 4.

Uniform Hypothesis. The first hypothesis introduced was
the uniform one (see Section 4). It represents the belief that
the next picture will be taken anywhere within the specified
grid and cell layout of a city, no matter where a person has
previously taken a picture at. It can be seen as a baseline
we want to compare other hypotheses against. If another
hypothesis is not more plausible than the uniform one, we
cannot expect it to provide a good explanation of how people
move around a city while taking photos.

Center Hypotheses. With these hypotheses, we hypoth-
esize that the daily activities of the local population of a
city and especially of the largest part of the visiting tourists
mainly focus on the center of the city. For Berlin, the main
part of the photos is clearly centered around the cultural
center as can be seen in Figure 1(c). Consequently, we ex-
pect the center hypothesis, i.e., the belief that people move
towards the center and stay there while taking pictures, to
be a better explanation of human photowalking behavior
compared to the uniform hypothesis. We calculate the evi-
dence of the center hypothesis around the city center for four
different spreading parameters, i.e., standard deviations of a
Gaussian distribution: 1km, 3km, 5km and 10km. For the
center coordinates used refer to Table 3.2. The results can
be seen in Figure 2(a). Throughout all values of K > 0, we
observe the highest plausibility for a standard deviation of
3km indicating a rather centralized city center since standard
deviations of 5km and 10km result in clearly less evidence.
The standard deviation of 1km yields good results for small
K compared to 5 and 10km sigmas. The larger we set K, the
stronger we believe in a given hypothesis. Thus, fewer spe-
cific parameter configurations receive higher prior probability
tailored towards those represented by the hypothesis—please
see [32] for further details. This means that the higher we
set K, the importance of the center peak with a given sigma
becomes more prominent. For instance, for a center hypoth-
esis with a sigma of 1km, lower values of K might also have
(lower) beliefs in parameter configurations outside this radius.
Based on this, we can explain the falling evidence for higher
values of K for the center hypothesis with a 1km sigma value.
This hypothesis seems to concentrate too densely on the
center with a small radius without also considering further
surroundings of the center. Thus, higher values of K increase
the belief in this density, why a falling evidence can be ob-
served. Contrary, other values of sigma seem to capture the
radius better, resulting in an increase of their evidence with
higher values of K. As mentioned, a radius of 3km results
in the highest evidences. As expected, all center hypotheses
are more plausible compared to the uniform one.

Proximity Hypotheses. The proximity hypothesis as in-
troduced in Section 4 is grounded on the belief that people
are mostly walking around when taking pictures in a city.
Consequently, pictures will be taken in close proximity to the
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(c) POI hypotheses
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(e) Proximate weighted POI hypotheses
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(f) Comparison between best hypotheses

Figure 2: Berlin experiments. This figure visualizes the results for our studies on human photo trails derived
from Berlin. First, for each type of hypotheses at interest, we compare the plausibility of various parameter
configurations with each other (a-e). Then, in (f) we compare the best hypotheses of each set with each other.
The results reveal intriguing explanations for human movement behavior while taking photos in Berlin. First
of all, all hypotheses at interest are more plausible than a uniform hypothesis that can be seen as a baseline.
The various parameter configurations reveal that the level of proximity is important. Being to narrow or
being too ample is worse compared to covering the right proximity. For instance, in (b) we can see that a
radius of 700m lads to the most plausible proximity hypothesis. Overall (f), a combination of the proximity
hypothesis and the weighted POI hypothesis provides the best explanation. This suggests that people prefer
to subsequently take photos at proximate POIs in a city. For further details, please refer to Section 5.1.

last picture. This idea is modelled by a Gaussian distribution
around the current location. The farther away another cell
is, the less likely it becomes that a picture is taken there
next. We calculate the proximity hypothesis for four different
standard deviations: 200m, 400m, 700m and 1.5km. The
results are depicted in Figure 2(b). Again, this hypothesis is
strongly superior to the uniform hypothesis. Comparing the
different spreading parameters, a sigma of 700m produces
the highest evidence for all values of K > 0. This indicates
that the best proximity hypothesis is the one that assumes
that follow-up pictures are being taken in a 700m radius
from their predecessor. For spreading parameters of 200 and
400m a similar situation occurs as for the center hypotheses
with a sigma of 1km: They seem to concentrate their belief
on a too narrow proximity leading to decreasing evidence
values for higher values of K. Thus, for K > 3, the proximity
hypothesis with a spreading factor of 1.5km also overtakes
the one with a sigma of 700m.

Points of Interest Hypotheses. Since not every point in
a city is equally popular, we formulate the POI (points of
interest) hypothesis. It is similar to the center hypothesis
in that regard, that the distribution is the same for every
starting place. The difference is that instead of moving to the
center of the city people, it expresses the belief that people
move to any cell containing a POI; thus, avoiding places which
do not contain a POI. The most simple way of weighting
places by their importance is by taking the number of POIs

they contain. Yet, this focuses the transition destinations to
a very limited amount of cells. Thus, we employ a similar
approach to the center hypothesis, letting each POI spread
its influence to surrounding cells weighted by a Gaussian
distribution based on its distance to the corresponding cell
and sum the resulting influence of each POI at each cell. We
extracted the POIs from Wikipedia and Yago as explained in
Section 3. Again, we compare different spreading parameters:
100m, 200m, 400m and 800m. Figure 2(c) shows that the
POI hypothesis without Gaussian spread indeed performs
inferior to those POI hypotheses allowing their influence
to spread. The two rather close-ranged spreads 200m and
400m perform the best implying that people indeed move
towards POIs. The worse performance of too narrow and
too wide ranges is an indicator that people tend to visit
places and take pictures of the place at a close range, but
not necessarily from the inside. Considering tourists, this
might be an indicator of them documenting where they were:
Close range and too far away pictures might not show enough
detail. Overall the POI hypothesis seems to perform worse
than the distance hypothesis comparing scales. Note that
each POI is spreading a base value of 1 in this case. This
limitation is lifted next, where we allow each POI to be
associated with a weight.

Weighted Points of Interest Hypotheses. In contrast
to the normal POI hypothesis, the weighted POI hypothesis
allows POIs to exhibit different levels of importance when



spreading their influence. The idea is that some POIs attract
a greater number of people, thus, we might believe that the
probability of a transition to such POIs is higher. In order to
define importance levels for the defined POIs, we extracted
online usage statistics of the corresponding Wikipedia pages.
Specifically, we are using view counts to weight the POIs as
described in Section 4 and 3. We are considering two schemes
of deriving weights from the view counts. One is to use the
view counts themselves and the other is taking the logarithm
of the view counts. We do this to account for Fitt’s law, i.e.,
that view counts are power law distributed, smoothing strong
peaks of highly popular places like the Brandenburg Gate.
Now, instead of calculating the weighted POI hypothesis for
every spreading parameter, we chose the best of the normal
POI hypothesis. In this case, two distribution parameters
are tied, that is, 200m and 400m. Figure 2(d) shows the
results. We observe that the raw view counts result in a
lower evidence strengthening the need for a normalization
of the view counts. Furthermore, we can see that using the
view counts strengthens the evidence of the hypothesis even
if marginal. This is an indicator that content and popularity
of social media content is indeed in some way connected to
human behavior in their daily live.

Proximate Weighted Points of Interest Hypotheses.
Note that the POI hypotheses as well as the center hypothe-
ses have both been neglecting local transition probabilities,
i.e., the transition probabilities to the other cells are inde-
pendent of the the cell the user starts from. As described in
Section 4, we can introduce local sensitivity by combining
hypotheses with the proximity hypothesis. We choose the
weighted POI hypothesis for a sigma parameter of 400m
since it was one of the best performing hypotheses so far
and incorporates human behavior data. For reasons of space
limitations, we choose the weighted POI hypothesis using
logarithmic weights together with a spreading parameter of
400m to be combined with the proximity hypothesis. In ad-
dition to the weighting parameter used to build the weighted
POI hypothesis, the proximity hypothesis also has a spread-
ing parameter. We choose to evaluate the following: 100m,
200m, 400m, 700m and 1.5 km. Figure 2(e) shows the re-
sults. Compared to the other hypotheses the evidences are
as high as for the proximity hypothesis with large spreading
parameters being the most favorable. The results are best
for a sigma of 700m and 1.5km. A direct comparison with
the other hypotheses follows in the next section.

Comparison. For a direct comparison of the different hy-
potheses we are taking the most plausible ones (best param-
eters) of each set. This is the center hypothesis for 3km,
the proximity hypothesis for 700m, the POI hypothesis for
a spreading parameter of 400m, the log weighted POI hy-
pothesis for 400m as well as the proximate, log weighted
POI hypothesis for 400m and a spread of 700m and 1.5km.
The main result as shown in Figure 2(f) is, that indeed, the
combination of the proximity hypothesis and the weighted
POI hypothesis provides the best explanation of how people
move around Berlin while taking photos. Yet, we observe
that the center hypothesis performs similar to the POI based
hypotheses without the proximity factor. The reason might
be that the POI hypotheses simply behave the same as the
center hypotheses in a way that they believe in transitions to
the city center since there are generally more POIs there. To
contrast this line of thought, we include a proximate center
hypothesis. If the former was true, this new combination

should perform equally well. However, both variants are still
strongly inferior to the proximate, weighted POI hypothesis.
Thus, we can improve the proximity hypothesis by adding
human generated content from Wikipedia and correspond-
ing user statistics. This allows us to conclude that human
trances on the Web and human traces in the real world are
conceptually intertwined by shared entities such as sights
being visited in real life and documented digitally.

5.2 Los Angeles, London and New York
To further augment the results from Section 5.1, we ana-

lyze three more cities, namely, Los Angeles (USA), London
(United Kingdom) and New York City (USA). We show simi-
larities and especially highlight some differences between the
cities. To this end, we provide Figure 3 in addition to the
results from Figure 2. Corresponding sub-figures are built in
the same way as Figure 2. That is, we first determine the
most plausible parameter configuration for each type of hy-
pothesis, and then compare these in Figure 3(a), Figure 3(b)
and Figure 3(c). However, due to space limitations, we resort
from explicitly presenting the individual results and focus on
the comparison here. By comparing the four different cities,
for most parts, all hypotheses perform pretty much the same
and the best parameters stay consistent. This indicates the
hypotheses about picture trails in Berlin can be generalized
to other cities as well implying some basic patterns that hold
even across countries.

However, there are two exceptions which are worth men-
tioning. First, in Los Angeles (see Figure 3(a)) the most
plausible center hypothesis is the one with a spread of 10km
instead of 3km. This indicates a city that either has a very
large center or non at all. Arguably, Los Angeles is a spread
out city which may cause this divergence This is further
confirmed by the fact that LA supports higher spreads for
POI hypotheses, i.e., 400km, compared to London or New
York City. Also, the the best performing hypotheses are
strongly indicating decreasing evidence with increasing K.
This is a strong indicator that the corresponding hypothe-
ses are missing specific parameter configurations (empirical
transitions), thus, not covering cells that should be modelled.

Second, the linearly weighted POI hypothesis in London
is superior to the logarithmically weighted one. This may
be due to differently distributed view counts and has to be
further investigated in the future.

6. DISCUSSION
In this work, we have conducted rigorous experiments

to gain a better understanding of the underlying processes
that are employed when people take photos while moving
through cities. We want to dedicate this section to discuss
some potential limitations and future aspects that we see as
worthy additions to the studies laid out in this work.

Data restrictions. While we have made efforts in compar-
ing the trails of various large cities, our experiments still
exhibit certain data restrictions. In the following, we want to
shortly discuss two potential restrictions. (i) First of all, we
limit the studies to human photo trails as derived from Flickr.
Thus, we are only able to make judgements about behavioral
aspects that emerge when people move through a city and
take photos. We cannot be sure that our observations would
be similar if we would study other kinds of movement data
such as mobile phone data. Even though this not the goal of
this article, we might assume that certain behavioral aspects



(a) Los Angeles (b) London (c) New York City

Figure 3: City (LA, LDN, NYC) experiments. This figure visualizes the results for our studies on human
photo trails derived from Los Angeles (a), London (b) and New York City (c). We only present a comparison
of the best hypotheses for each type of hypotheses for each city. Overall, we can identify similar explanations
across cities (cf. Figure 2(f)). One main exception is that we observe higher spread parameters for Los
Angeles which might be explained by the fact that Los Angeles is a rather large and spread out city. Overall,
our results show that our hypothesis that people prefer to subsequently take photos at proximate POIs in a
city provides a good explanation for our human photo trails at interest across various cities.

are similar, regardless which data we look at as suggested in
[10]. Yet, we plan on delving deeper into this in future, by
not only contrasting different cities, but also different kinds
of movement data—e.g., social check-in data, mobile phone
data or business reviewing data. (ii) Second, we focus on a
city level in this work. While this allows us to gain insights
into urban behavior, we might observe different behavior if
we would extend our scope of interest. To give an example,
by looking at cities, we already constrain our studies on a
small geographic space which might benefit proximity based
hypotheses to a certain extend. If we would extend the
scope, by e.g., looking at a country or continent level, the
results might largely differ. However, then, other kinds of
hypotheses might be more plausible to study.

Choice of hypotheses. We focus on our experiments on a
set of hypotheses. These are partly motivated by related work
and partly by our own intuitions. While observed results
give interesting insights into the production of the trails
at interest, our set of studied hypotheses is not complete.
All other kinds of hypotheses are conceivable and can be
investigated with HypTrails and our data. Next, we suggest
some potential candidates: (i) A river hypothesis might
express the belief that a river is a natural barrier in a city.
People might have restrictions between crossing a river in
order to take pictures at the other side of it. (ii) A district
hypothesis might have similar intentions, but in this case
the district boundaries may be some kind of natural barrier.
Finally, (iii) a demographic hypothesis might make certain
assumptions about the influence of demographic aspects in
a city. For example, people might prefer to take photos in
parts of a city with less crime rates.

Tourists vs. residents. Previous work has suggested that
the photographing behavior on Flickr differs between tourists
and residents in a city [12, 14]. The authors of [12] argue
that residents are not under the direct pressure of visiting
as many POIs within as certain time span as tourists are.
Thus, we might also see differences into their behavioral
aspects producing the human photo trails studies in this
article. While we have focused on an aggregated view in this
focus, the distinction between tourists and residents might
be an additional highly interesting layer which we leave open
for future work.

7. CONCLUSION
In this paper, we investigated and compared a set of hy-

potheses about urban photo trails across different cities.
Towards that end, we employed the Bayesian HypTrails ap-
proach to study the sequences of locations generated by
users who are uploading photos to the online platform Flickr.
For the informed specification of hypotheses, we employed
additional data sources such as DBpedia and view counts
of Wikipedia articles. Our results suggest that cities share
common characteristics, i.e., that the overall ordering of ex-
planations for different cities is quite stable. At the same
time, we observe differences on a more detailed level. For
example, while proximity is a good explanation across all
cities, for Los Angeles we observe movement patterns on a
different scale.

In future work, our study can be extended to include other
cities. Additionally, it would be interesting to expand the
current city-level analysis to a larger scale, e.g., trails that
reach across different cities and countries. Furthermore, we
aim at a more general framework that allows to capture and
integrate different data sources and hypotheses for contin-
uous geo-spatial data into the Markov chain models of the
HypTrails approach. Finally, improved tool support for the
interactive exploration of location sequences and hypotheses
would be a helpful for researchers.
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