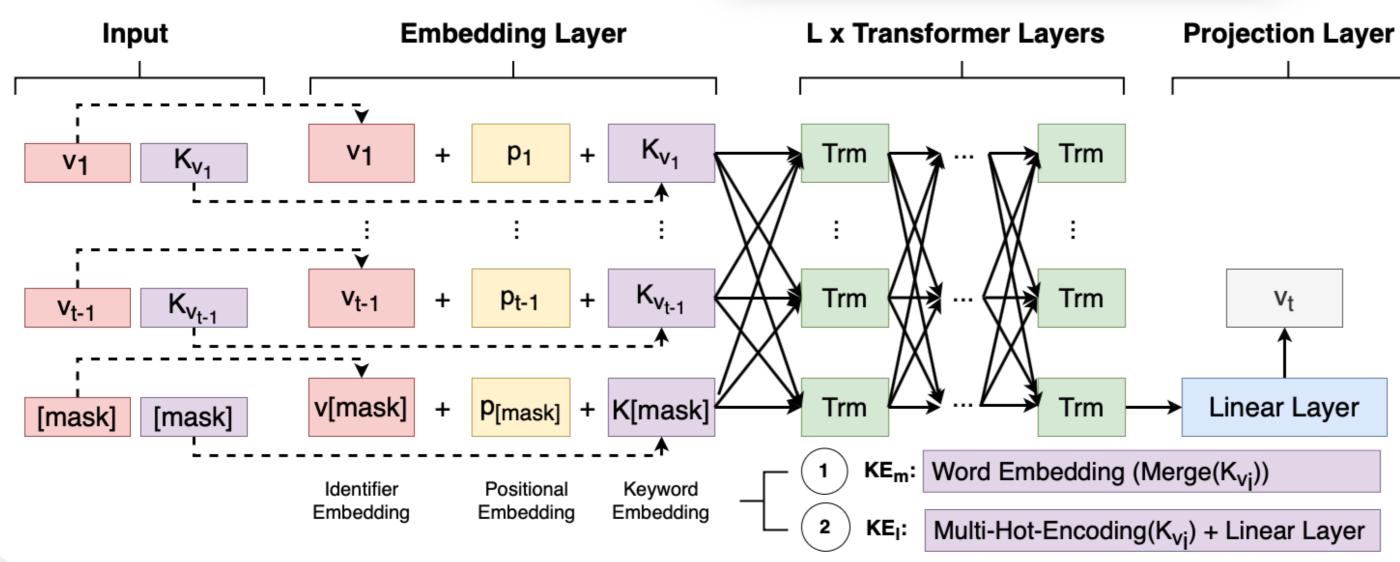



# Integrating Keywords into BERT4Rec for Sequential Recommendation

Elisabeth Fischer, Daniel Zoller, Alexander Dallmann, Andreas Hotho {elisabeth.fischer, zoller, dallmann, hotho}@informatik.uni-wuerzburg.de

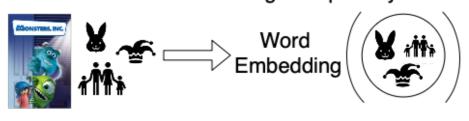
**BERT4Rec** is a recent adaption of the BERT model from the NLP domain for the task of sequential recommendation and has proven itself to be state-of-the-art. One limitation is the representation of items merely as ids, as there is often additional information about items available. Therefore we propose KeBERT4Rec, a modification which allows to add keyword descriptions for each item.

## Which movie should we recommend?




Knowing that all movies in the sequence are comedy (\*\*) and family (\*\*) movies, the horror movie "Scream" is unlikely to be the next one. "Interstellar" and "The Incredibles" share some of the genres already seen and are therefore more likely to be selected.

## BERT4Rec with Item Keywords


- given a sequence of items BERT4Rec is able to predict the next item
- BERT4Rec is operating on item ids and their positions in the sequence
- additional information about the items is often available and might be useful for recommendation
- we integrate such information in the form of keywords into the BERT4Rec model to improve the predictions
- for each item we use a set of keywords as the item description
- we propose two variants to embed these keywords into our architecture

## **KeBERT4Rec Architecture** L x Transformer Layers



#### **Example: Keyword Embeddings**

**KE<sub>m</sub>:** Merge all Keywords to super keyword and create Word Embedding of super keyword



1 KE<sub>I</sub>: Multi-Hot-Encoding and scale with Linear Layer



Movielens 20m: ML-20m contains movie ratings from MovieLens. Genre information of movies is used as keywords. Fashion: Click paths collected from an online fashion shop, with keywords describing the content.

#### **Datasets**

#User #Items #Keywords #Interactions Avg.length Density dataset 138,493 ML-20m 26,744 20 20m 0,54 % 144,4 0.02 % 47,158 63,706 301 1.2m 24.4 Fashion

### Results

- popular baseline is outperformed by both BERT4Rec and KeBERT4Rec
- LastItem baseline (only available for Fashion) is also outperformed by both methods
- both variants with keyword embeddings are significantly better than BERT4Rec
- bigger performance increase observed on Fashion dataset, which might be explained by more granular keywords
- multi-hot keyword encoding ( $KE_l$ ) performs significantly better in most cases and never worse than  $KE_{m}$ , so we can conclude it is the better approach.

| Dataset                | Metric  | POP   | Bert4Rec | $KE_m$ | $KE_l$                    |
|------------------------|---------|-------|----------|--------|---------------------------|
| ML-20m                 | HR@1    | 0.022 | 0.528    | 0.536  | 0.542*                    |
|                        | HR@5    | 0.081 | 0.871    | 0.876  | <b>0.877</b> <sup>+</sup> |
|                        | HR@10   | 0.138 | 0.943    | 0.946  | 0.945                     |
|                        | NDCG@5  | 0.051 | 0.715    | 0.722  | 0.725*                    |
|                        | NDCG@10 | 0.070 | 0.739    | 0.745  | 0.747*                    |
| Fashion<br>(LI: 0.294) | HR@1    | 0.029 | 0.476    | 0.642  | 0.648+                    |
|                        | HR@5    | 0.066 | 0.700    | 0.824  | 0.823                     |
|                        | HR@10   | 0.089 | 0.795    | 0.871  | 0.871                     |
|                        | NDCG@5  | 0.048 | 0.594    | 0.741  | 0.743*                    |
|                        | NDCG@10 | 0.056 | 0.625    | 0.757  | 0.759 <sup>+</sup>        |

Results of experiments as HitRate (HR) and Normalized Discounted Cumulative Gain (NDCG). Both variants of KeBERT4Rec are significantly better than BERT4Rec ( $\alpha \leq 0.01$ ).  $\mathsf{KE}_l$  marked with \* is significant better than  $\mathsf{KE}_m$  with  $\alpha \leq 0.01$  and \* with  $\alpha \leq 0.05$ .